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Abstract – This work targets architectured structures, or metamaterials, the underlying cou-
plings of which are created by active external forces. Such metamaterials are usually used to
mimic quantum condensed matter systems that interact with the environment, and are mathe-
matically described by non-Hermitian Bloch Hamiltonians. Non-Hermitian systems are being
extensively researched both in the quantum and the classical realms, focusing mainly on their
topological nature and bulk-boundary-related effects. However, less attention is devoted to their
dynamical stability properties, which are crucial for implementation. Here, the stability of a
simple, yet fundamental non-Hermitian system, is explored.

I. INTRODUCTION

The striking analogy between the electronic bandstructure of solids and the frequency dispersion of classical
waves enables mimicking various condensed matter phenomena on intrinsically classical platforms, thus enriching
and advancing classical wave control capabilities. The most common topic for the analogy is, probably, the quan-
tum topological wave phenomena [1, 2], resulting in beam-like narrow, robust nonreflecting waves, propagating
along interfaces or boundaries, as was realized in acoustic, elastic and electric circuit metamaterials [3–5].

In particular, a considerable effort was devoted to mimicking non-Hermitian quantum systems [6], which are
open systems that exchange energy with the environment. These systems are characterized by regions of imagi-
nary spectrum, indicating broken parity-time (PT ) symmetry phase. The corresponding classical non-Hermitian
metamaterials are usually obtained by an underlying interplay of gain and loss at the sites, or by externally induced
non-reciprocal couplings between the sites.

Under certain conditions the PT -symmetric phase can be restored, featuring a fully real spectrum with isolated
exceptional point (EP) singularities, while the system remains non-Hermitian. This special case is of a particular
interest, since intricate and extraordinary wave dynamics is unveiled at the vicinity of the EPs, such as unidirec-
tional invisibility and absorption, nonreciprocal transmission, or asymmetric wave propagation [7–13].

One of the most explored attributes of non-Hermitian systems is the topological characteristics of their band-
structure, including bulk-boundary correspondence (or its breakdown), edge states, and boundary-related effects,
such as the skin effect [14]. In the analysis of these systems, steady-state time-harmonic solutions are usually
assumed without explicit consideration of the underlying dynamical stability, i.e. without verifying the conditions
for which the actual response converges to these solutions.

However, dynamical stability is central to non-Hermitian systems, which can be intuitively deduced from the
wave amplitude growth in the presence of imaginary spectrum. Here, we consider classical one-dimensional
non-Hermitian systems, which are fundamental in non-Hermitian metamaterials research, and constitute the most
common platform for the unidirectional and non-reciprocal demonstrations. We study the relation between the
occurrence of imaginary frequency dispersion and the poles of the corresponding state-space model, which are
direct indicators of dynamical stability.

II. THE SYSTEM MODEL AND STABILITY DISCUSSION

A non-Hermitian system that is frequently considered in condensed matter research is a one-dimensional A−B
dimer lattice of a constant d, also dubbed the SSH model [15], subjected to an interlacing gain-loss pattern ±iγ .
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When the electron hopping has an interlacing strength 1 and η > 1, this system can be described by the effective
Bloch Hamiltonian

H̃ =

(
−iγ −

(
η + e−ikd

)
−
(
η + eikd

)
iγ

)
. (1)

This Hamiltonian is non-Hermitian, since H̃
† ̸= H̃. The corresponding energy spectrum E, which is given by

E = ±
√

η2 − γ2 +2η cos(kd)+1, contains complex-valued regions. However, when γ and η satisfy the special
relation γ = η − 1, the spectrum becomes real for all k, while the Hamiltonian remains non-Hermitian, and the
broken PT-symmetry phase is then restored.

To obtain a classical-mechanical model ü = Du with frequency dispersion analogous to (1), the complex-valued
term iγ is usually imitated by a velocity variable u̇. This is due to its Fourier transform F{u̇}= iωu, which yields
the required complex term in steady-state when normalizing by the operating frequency. The resulting nth unit cell
dynamics of the classical metamaterial then becomes{

üA
n = uB

n−1 +ηuB
n − (1+η)uA

n + γ u̇A
n ,

üB
n = uA

n+1 +ηuA
n − (1+η)uB

n − γ u̇B
n .

(2)

For an elastic metamaterial, the nearest neighbor coupling term η may indicate a spring of stiffness different than
1. While the loss term −iγ represents dissipation, which can be obtained by passive elements, the gain term
+iγ requires external energy. The dynamics of (2) can be therefore realized using a feedback-based metamaterial
[10, 16–18]. By the mapping E ↔ ω2, the steady-state spectrum of (2) is similar to that of (1) up to a shift and a
square root of the frequency, and replicates the PT-symmetry phase restoration for the relation γ = η −1. Since in
that case the classical spectrum is purely real, the underlying dynamics is expected to be stable.

The dynamical stability is determined by the eigenvalues of the A matrix (also dubbed by poles) of the overall
metamaterial state-space realization ẋ = Ax, where x =

[
u u̇

]′. To test the correlation between the poles and the
spectrum, the poles are plotted in Fig. 1 alongside the quantum spectrum of (1), and the classical steady-state
spectrum of (2) for η = 2 and γ = η −1 = 1.
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Fig. 1: Left (middle) - dispersion of the quantum (classical) system in the restored PT-symmetric phase. Right - the corre-
sponding state-space poles.

It can be observed from Fig. 1 that the frequency dispersion of the classical model precisely follows the quantum
model energy dispersion, in particular at the vicinity of the exceptional points. However, although the spectrum
is indeed purely real, as expected, the poles of the dynamical model spread to the right half of the complex plane,
indicating instability.

III. CONCLUSION

Deploying the quantum PT-symmetry relation directly in the classical metamaterial model does not necessarily
guarantee dynamical stability. Therefore, a new relation between the gain parameter γ and the nearest neighbor
coupling parameter η needs to be discovered.
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[13] C. Rasmussen, L. Quan, and A. Alù, “Acoustic nonreciprocity,” Journal of Applied Physics, vol. 129, no. 21, p. 210903,
2021.

[14] M. Brandenbourger, X. Locsin, E. Lerner, and C. Coulais, “Non-reciprocal robotic metamaterials,” Nature Communica-
tions, vol. 10, no. 1, pp. 1–8, 2019.

[15] S. Lieu, “Topological phases in the non-Hermitian Su-Schrieffer-Heeger model,” Physical Review B, vol. 97, no. 4, p.
045106, 2018.

[16] L. Sirota, R. Ilan, Y. Shokef, and Y. Lahini, “Non-Newtonian topological mechanical metamaterials using feedback con-
trol,” Physical Review Letters, vol. 125, no. 25, p. 256802, 2020.

[17] L. Sirota, Y. Lahini, R. Ilan, and Y. Shokef, “Feedback-based topological mechanical metamaterials,” in Fourteenth
International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2020, pp. 415–417.

[18] L. Sirota, D. Sabsovich, Y. Lahini, R. Ilan, and Y. Shokef, “Real-time steering of curved sound beams in a feedback-based
topological acoustic metamaterial,” Mechanical Systems and Signal Processing, vol. 153, p. 107479, 2021.


